Close Menu
    Facebook X (Twitter) Instagram
    • Privacy Policy
    • Terms Of Service
    • Legal Disclaimer
    • Social Media Disclaimer
    • DMCA Compliance
    • Anti-Spam Policy
    Facebook X (Twitter) Instagram
    Brief ChainBrief Chain
    • Home
    • Crypto News
      • Bitcoin
      • Ethereum
      • Altcoins
      • Blockchain
      • DeFi
    • AI News
    • Stock News
    • Learn
      • AI for Beginners
      • AI Tips
      • Make Money with AI
    • Reviews
    • Tools
      • Best AI Tools
      • Crypto Market Cap List
      • Stock Market Overview
      • Market Heatmap
    • Contact
    Brief ChainBrief Chain
    Home»AI News»A Coding Guide to Master Self-Supervised Learning with Lightly AI for Efficient Data Curation and Active Learning
    A Coding Guide to Master Self-Supervised Learning with Lightly AI for Efficient Data Curation and Active Learning
    AI News

    A Coding Guide to Master Self-Supervised Learning with Lightly AI for Efficient Data Curation and Active Learning

    October 12, 20258 Mins Read
    Share
    Facebook Twitter LinkedIn Pinterest Email
    kraken


    In this tutorial, we explore the power of self-supervised learning using the Lightly AI framework. We begin by building a SimCLR model to learn meaningful image representations without labels, then generate and visualize embeddings using UMAP and t-SNE. We then dive into coreset selection techniques to curate data intelligently, simulate an active learning workflow, and finally assess the benefits of transfer learning through a linear probe evaluation. Throughout this hands-on guide, we work step by step in Google Colab, training, visualizing, and comparing coreset-based and random sampling to understand how self-supervised learning can significantly improve data efficiency and model performance. Check out the FULL CODES here.

    !pip uninstall -y numpy
    !pip install numpy==1.26.4
    !pip install -q lightly torch torchvision matplotlib scikit-learn umap-learn

    import torch
    import torch.nn as nn
    import torchvision
    from torch.utils.data import DataLoader, Subset
    from torchvision import transforms
    import numpy as np
    import matplotlib.pyplot as plt
    from sklearn.manifold import TSNE
    from sklearn.neighbors import NearestNeighbors
    import umap

    from lightly.loss import NTXentLoss
    from lightly.models.modules import SimCLRProjectionHead
    from lightly.transforms import SimCLRTransform
    from lightly.data import LightlyDataset

    coinbase

    print(f”PyTorch version: {torch.__version__}”)
    print(f”CUDA available: {torch.cuda.is_available()}”)

    We begin by setting up the environment, ensuring compatibility by fixing the NumPy version and installing essential libraries like Lightly, PyTorch, and UMAP. We then import all necessary modules for building, training, and visualizing our self-supervised learning model, confirming that PyTorch and CUDA are ready for GPU acceleration. Check out the FULL CODES here.

    class SimCLRModel(nn.Module):
    “””SimCLR model with ResNet backbone”””
    def __init__(self, backbone, hidden_dim=512, out_dim=128):
    super().__init__()
    self.backbone = backbone
    self.backbone.fc = nn.Identity()
    self.projection_head = SimCLRProjectionHead(
    input_dim=512, hidden_dim=hidden_dim, output_dim=out_dim
    )

    def forward(self, x):
    features = self.backbone(x).flatten(start_dim=1)
    z = self.projection_head(features)
    return z

    def extract_features(self, x):
    “””Extract backbone features without projection”””
    with torch.no_grad():
    return self.backbone(x).flatten(start_dim=1)

    We define our SimCLRModel, which uses a ResNet backbone to learn visual representations without labels. We remove the classification head and add a projection head to map features into a contrastive embedding space. The model’s extract_features method allows us to obtain raw feature embeddings directly from the backbone for downstream analysis. Check out the FULL CODES here.

    def load_dataset(train=True):
    “””Load CIFAR-10 dataset”””
    ssl_transform = SimCLRTransform(input_size=32, cj_prob=0.8)

    eval_transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
    ])

    base_dataset = torchvision.datasets.CIFAR10(
    root=”./data”, train=train, download=True
    )

    class SSLDataset(torch.utils.data.Dataset):
    def __init__(self, dataset, transform):
    self.dataset = dataset
    self.transform = transform

    def __len__(self):
    return len(self.dataset)

    def __getitem__(self, idx):
    img, label = self.dataset[idx]
    return self.transform(img), label

    ssl_dataset = SSLDataset(base_dataset, ssl_transform)

    eval_dataset = torchvision.datasets.CIFAR10(
    root=”./data”, train=train, download=True, transform=eval_transform
    )

    return ssl_dataset, eval_dataset

    In this step, we load the CIFAR-10 dataset and apply separate transformations for self-supervised and evaluation phases. We create a custom SSLDataset class that generates multiple augmented views of each image for contrastive learning, while the evaluation dataset uses normalized images for downstream tasks. This setup helps the model learn robust representations invariant to visual changes. Check out the FULL CODES here.

    def train_ssl_model(model, dataloader, epochs=5, device=”cuda”):
    “””Train SimCLR model”””
    model.to(device)
    criterion = NTXentLoss(temperature=0.5)
    optimizer = torch.optim.SGD(model.parameters(), lr=0.06, momentum=0.9, weight_decay=5e-4)

    print(“\n=== Self-Supervised Training ===”)
    for epoch in range(epochs):
    model.train()
    total_loss = 0
    for batch_idx, batch in enumerate(dataloader):
    views = batch[0]
    view1, view2 = views[0].to(device), views[1].to(device)

    z1 = model(view1)
    z2 = model(view2)
    loss = criterion(z1, z2)

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    total_loss += loss.item()

    if batch_idx % 50 == 0:
    print(f”Epoch {epoch+1}/{epochs} | Batch {batch_idx} | Loss: {loss.item():.4f}”)

    avg_loss = total_loss / len(dataloader)
    print(f”Epoch {epoch+1} Complete | Avg Loss: {avg_loss:.4f}”)

    return model

    Here, we train our SimCLR model in a self-supervised manner using the NT-Xent contrastive loss, which encourages similar representations for augmented views of the same image. We optimize the model with stochastic gradient descent (SGD) and track the loss across epochs to monitor learning progress. This stage teaches the model to extract meaningful visual features without relying on labeled data. Check out the FULL CODES here.

    def generate_embeddings(model, dataset, device=”cuda”, batch_size=256):
    “””Generate embeddings for the entire dataset”””
    model.eval()
    model.to(device)

    dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=False, num_workers=2)

    embeddings = []
    labels = []

    print(“\n=== Generating Embeddings ===”)
    with torch.no_grad():
    for images, targets in dataloader:
    images = images.to(device)
    features = model.extract_features(images)
    embeddings.append(features.cpu().numpy())
    labels.append(targets.numpy())

    embeddings = np.vstack(embeddings)
    labels = np.concatenate(labels)

    print(f”Generated {embeddings.shape[0]} embeddings with dimension {embeddings.shape[1]}”)
    return embeddings, labels

    def visualize_embeddings(embeddings, labels, method=’umap’, n_samples=5000):
    “””Visualize embeddings using UMAP or t-SNE”””
    print(f”\n=== Visualizing Embeddings with {method.upper()} ===”)

    if len(embeddings) > n_samples:
    indices = np.random.choice(len(embeddings), n_samples, replace=False)
    embeddings = embeddings[indices]
    labels = labels[indices]

    if method == ‘umap’:
    reducer = umap.UMAP(n_neighbors=15, min_dist=0.1, metric=”cosine”)
    else:
    reducer = TSNE(n_components=2, perplexity=30, metric=”cosine”)

    embeddings_2d = reducer.fit_transform(embeddings)

    plt.figure(figsize=(12, 10))
    scatter = plt.scatter(embeddings_2d[:, 0], embeddings_2d[:, 1],
    c=labels, cmap=’tab10′, s=5, alpha=0.6)
    plt.colorbar(scatter)
    plt.title(f’CIFAR-10 Embeddings ({method.upper()})’)
    plt.xlabel(‘Component 1’)
    plt.ylabel(‘Component 2′)
    plt.tight_layout()
    plt.savefig(f’embeddings_{method}.png’, dpi=150)
    print(f”Saved visualization to embeddings_{method}.png”)
    plt.show()

    def select_coreset(embeddings, labels, budget=1000, method=’diversity’):
    “””
    Select a coreset using different strategies:
    – diversity: Maximum diversity using k-center greedy
    – balanced: Class-balanced selection
    “””
    print(f”\n=== Coreset Selection ({method}) ===”)

    if method == ‘balanced’:
    selected_indices = []
    n_classes = len(np.unique(labels))
    per_class = budget // n_classes

    for cls in range(n_classes):
    cls_indices = np.where(labels == cls)[0]
    selected = np.random.choice(cls_indices, min(per_class, len(cls_indices)), replace=False)
    selected_indices.extend(selected)

    return np.array(selected_indices)

    elif method == ‘diversity’:
    selected_indices = []
    remaining_indices = set(range(len(embeddings)))

    first_idx = np.random.randint(len(embeddings))
    selected_indices.append(first_idx)
    remaining_indices.remove(first_idx)

    for _ in range(budget – 1):
    if not remaining_indices:
    break

    remaining = list(remaining_indices)
    selected_emb = embeddings[selected_indices]
    remaining_emb = embeddings[remaining]

    distances = np.min(
    np.linalg.norm(remaining_emb[:, None] – selected_emb, axis=2), axis=1
    )

    max_dist_idx = np.argmax(distances)
    selected_idx = remaining[max_dist_idx]
    selected_indices.append(selected_idx)
    remaining_indices.remove(selected_idx)

    print(f”Selected {len(selected_indices)} samples”)
    return np.array(selected_indices)

    We extract high-quality feature embeddings from our trained backbone, cache them with labels, and project them to 2D using UMAP or t-SNE to visually see the cluster structure emerge. Next, we curate data using a coreset selector, either class-balanced or diversity-driven (k-center greedy), to prioritize the most informative, non-redundant samples for downstream training. This pipeline helps us both see what the model learns and select what matters most. Check out the FULL CODES here.

    def evaluate_linear_probe(model, train_subset, test_dataset, device=”cuda”):
    “””Train linear classifier on frozen features”””
    model.eval()

    train_loader = DataLoader(train_subset, batch_size=128, shuffle=True, num_workers=2)
    test_loader = DataLoader(test_dataset, batch_size=256, shuffle=False, num_workers=2)

    classifier = nn.Linear(512, 10).to(device)
    criterion = nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam(classifier.parameters(), lr=0.001)

    for epoch in range(10):
    classifier.train()
    for images, targets in train_loader:
    images, targets = images.to(device), targets.to(device)

    with torch.no_grad():
    features = model.extract_features(images)

    outputs = classifier(features)
    loss = criterion(outputs, targets)

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    classifier.eval()
    correct = 0
    total = 0

    with torch.no_grad():
    for images, targets in test_loader:
    images, targets = images.to(device), targets.to(device)
    features = model.extract_features(images)
    outputs = classifier(features)
    _, predicted = outputs.max(1)
    total += targets.size(0)
    correct += predicted.eq(targets).sum().item()

    accuracy = 100. * correct / total
    return accuracy

    def main():
    device=”cuda” if torch.cuda.is_available() else ‘cpu’
    print(f”Using device: {device}”)

    ssl_dataset, eval_dataset = load_dataset(train=True)
    _, test_dataset = load_dataset(train=False)

    ssl_subset = Subset(ssl_dataset, range(10000))
    ssl_loader = DataLoader(ssl_subset, batch_size=128, shuffle=True, num_workers=2, drop_last=True)

    backbone = torchvision.models.resnet18(pretrained=False)
    model = SimCLRModel(backbone)
    model = train_ssl_model(model, ssl_loader, epochs=5, device=device)

    eval_subset = Subset(eval_dataset, range(10000))
    embeddings, labels = generate_embeddings(model, eval_subset, device=device)

    visualize_embeddings(embeddings, labels, method=’umap’)

    coreset_indices = select_coreset(embeddings, labels, budget=1000, method=’diversity’)
    coreset_subset = Subset(eval_dataset, coreset_indices)

    print(“\n=== Active Learning Evaluation ===”)
    coreset_acc = evaluate_linear_probe(model, coreset_subset, test_dataset, device=device)
    print(f”Coreset Accuracy (1000 samples): {coreset_acc:.2f}%”)

    random_indices = np.random.choice(len(eval_subset), 1000, replace=False)
    random_subset = Subset(eval_dataset, random_indices)
    random_acc = evaluate_linear_probe(model, random_subset, test_dataset, device=device)
    print(f”Random Accuracy (1000 samples): {random_acc:.2f}%”)

    print(f”\nCoreset improvement: +{coreset_acc – random_acc:.2f}%”)

    print(“\n=== Tutorial Complete! ===”)
    print(“Key takeaways:”)
    print(“1. Self-supervised learning creates meaningful representations without labels”)
    print(“2. Embeddings capture semantic similarity between images”)
    print(“3. Smart data selection (coreset) outperforms random sampling”)
    print(“4. Active learning reduces labeling costs while maintaining accuracy”)

    if __name__ == “__main__”:
    main()

    We freeze the backbone and train a lightweight linear probe to quantify how good our learned features are, then evaluate accuracy on the test set. In the main pipeline, we pretrain with SimCLR, generate embeddings, visualize them, pick a diverse coreset, and compare linear-probe performance against a random subset, thereby directly measuring the value of smart data curation.

    In conclusion, we have seen how self-supervised learning enables representation learning without manual annotations and how coreset-based data selection enhances model generalization with fewer samples. By training a SimCLR model, generating embeddings, curating data, and evaluating through active learning, we experience the end-to-end process of modern self-supervised workflows. We conclude that by combining intelligent data curation with learned representations, we can build models that are both resource-efficient and performance-optimized, setting a strong foundation for scalable machine learning applications.

    Check out the FULL CODES here. Feel free to check out our GitHub Page for Tutorials, Codes and Notebooks. Also, feel free to follow us on Twitter and don’t forget to join our 100k+ ML SubReddit and Subscribe to our Newsletter. Wait! are you on telegram? now you can join us on telegram as well.

    Asif Razzaq is the CEO of Marktechpost Media Inc.. As a visionary entrepreneur and engineer, Asif is committed to harnessing the potential of Artificial Intelligence for social good. His most recent endeavor is the launch of an Artificial Intelligence Media Platform, Marktechpost, which stands out for its in-depth coverage of machine learning and deep learning news that is both technically sound and easily understandable by a wide audience. The platform boasts of over 2 million monthly views, illustrating its popularity among audiences.

    🙌 Follow MARKTECHPOST: Add us as a preferred source on Google.



    Source link

    notion
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    CryptoExpert
    • Website

    Related Posts

    The cost of thinking | MIT News

    November 20, 2025

    Google DeepMind’s WeatherNext 2 Uses Functional Generative Networks For 8x Faster Probabilistic Weather Forecasts

    November 18, 2025

    CFOs Bet Big on AI-But Warn the Real Wins Come Only When Strategy Takes the Wheel

    November 17, 2025

    MIT researchers propose a new model for legible, modular software | MIT News

    November 16, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    kraken
    Latest Posts

    What’s Going On With Saylor’s Bitcoin Strategy, And Is A Collapse Coming?

    November 20, 2025

    Prospective CFTC chair Addresses DeFi Regulation at Nomination Hearing

    November 20, 2025

    The cost of thinking | MIT News

    November 20, 2025

    Early Recovery In Bitcoin, Altcoins Falters: Are New Lows Incoming?

    November 20, 2025

    XRP sees profitability plunge to lowest since 2024 election

    November 20, 2025
    aistudios
    LEGAL INFORMATION
    • Privacy Policy
    • Terms Of Service
    • Legal Disclaimer
    • Social Media Disclaimer
    • DMCA Compliance
    • Anti-Spam Policy
    Top Insights

    Inside his leveraged crypto liquidation meltdown

    November 21, 2025

    Cayman Court Grants Core Foundation Injunction to Stop Maple Finance’s Bitcoin Product

    November 21, 2025
    aistudios
    Facebook X (Twitter) Instagram Pinterest
    © 2025 BriefChain.com - All rights reserved.

    Type above and press Enter to search. Press Esc to cancel.